Inventarisaties van hoefdieren in de Oostvaardersplassen

Geert Groot Bruinderink en Jasja Dekker

2011
Rapport van de Zoogdiervereniging
In opdracht van Staatsbosbeheer
Inventarisaties van hoefdieren in de Oostvaardersplassen

Dit rapport kan geciteerd worden als:
INHOUDSOPGAVE

DEEL 1: DE TELLINGEN ... 5

1 Inleiding ... 7
 Probleemstelling .. 7
 Leeswijzer ... 8
 ICMO2 (2010) ... 8

2 Hoefdiertellingen .. 9
 Indirecte waarnemingen ... 10
 Directe waarnemingen .. 11
 Hulpmiddelen ... 14

3 Conclusies .. 18
 Nadere uitwerking ICMO2 advies Oostvaardersplassen 18
 I. Pilot in januari 2011 met Evaluatie ... 19
 Ibis. Evaluatie pilot januari 2011 ... 19
 II. Overige tellingen in 2011 ... 20
 III. Evaluatie einde 2011 ten behoeve van handelingen in 2012 en volgende jaren ... 20
 IV. Uitvoering en delen van de ervaringen ... 20

DEEL II. DATAOPSLAG ... 23

1 noodzaak speciale dataopslag ... 25
 Inleiding ... 25
 OVP hoofdieren-database ... 25

2 Structuur data ... 28

3 Technische uitvoering ... 33

Bijlage protocol 1: telling hoofdieren Oostvaardersplassen vanuit de lucht (januari 2011) ... 34

Bijlage protocol 2: vastleggen van de reactie van de hoofdieren op het gebruik van een vliegtuig bij de telling (januari 2011) 36

Bijlage protocol 3: telling hoofdieren Oostvaardersplassen vanaf de grond (augustus 2011) ... 37
Dankwoord
Voorliggend rapport won aan kwaliteit door de reacties van Jaap Rouwenhorst, Jan Griekspoor, Leo Smits, Theo Meeuwissen en Marc Waterman (Staatsbosbeheer) en Perry Cornelissen (Rijkswaterstaat Waterdienst). Hen past een woord van dank.
DEEL 1: DE TELLINGEN
1 INLEIDING

Probleemstelling

In de Oostvaardersplassen leven populaties Heckrunderen, Konikpaarden, edelherten en reeën. Om de omvang van de populaties te monitoren voert de beheerder regelmatige inventarisaties uit, een opgave die mede voortkomt uit het ICMO advies (2006). De overheid wil daarbij een zo hoog mogelijke mate van betrouwbaarheid en inzicht in de exacte aantallen en trends. Daarbij is, naast de aandacht voor de aantallen ook behoefte aan meer informatie over de geslachtsverhouding, sterfte (inclusief afschot) en aanwas, om trends te kunnen herleiden.

Tot 1996 werden de aantallen van deze dieren zeer nauwkeurig bijgehouden door middel van veldtellingen. Vanwege de geringe aantallen was dit vrij eenvoudig te doen. Na de overdracht van het beheer in 1996 van Rijkswaterstaat naar Staatsbosbeheer werden de aantallen op 1 januari van ieder jaar berekend op basis van het aantal afgevallen en geboren dieren. Pas in 2010 zijn de populaties weer met behulp van drie externe partijen in het veld geteld, omdat er bij diverse partijen twijfels waren gerezen over de juistheid van de aantallen die door Staatsbosbeheer werden gehanteerd. Uit deze tellingen kwam onderstaand beeld naar voren van de ‘werkelijk’ aanwezige aantallen hoefdieren per 1 december 2010:

- 1100 Konikpaarden (inclusief veulens 2010, telling Van Dierendonck);
- 360 Heckrunderen (telling Groot Bruinderink/Dekker aangevuld door telling Staatsbosbeheer wat betreft kalveren 2010 die na die telling zijn geboren);
- 2500 edelherten (inclusief kalveren 2010, telling IPC Groene Ruimte: 2515 ± 624);
- 35 reeën (vooral in de rietzone langs de Knardijk; telling Staatsbosbeheer).

Uit de telling kwam naar voren dat er over de afgelopen 15 jaren een mismatch heeft kunnen ontstaan tussen de berekende en de in het veld getelde aantallen. Bij de tot 2010 gehanteerde methode werden de aantallen dieren op 1 januari van het volgende jaar berekend op basis van de stand op 1 januari in het betreffende jaar en het getelde aantal geboorten en getelde aantal sterfgevallen in het betreffende jaar. Controle-tellingen van de totale populaties werden niet uitgevoerd. Eventuele fouten die kunnen optreden bij de tellingen van geboorte en sterfte, en dit kan een simpele systematische fout zijn, worden op deze manier niet opgemerkt en na enkele jaren kan een kleine jaarlijkse fout oplopen tot een groot verschil tussen berekende aantallen en de in het veld getelde aantal dieren. Bij Heckrunderen bedroeg deze fout bijvoorbeeld 10 dieren per jaar. Deze gehanteerde methode kan goed worden uitgeoefend mits er regelmatig controles plaatsvinden (1x in de 3 tot 5 jaar) om (systematische) fouten te ontdekken waarvoor gecorrigeerd moet worden of dat bepaalde aannames moeten worden bijgesteld. Het achterwege blijven van de controles heeft de verschillen doen ontstaan. Zowel bij het tellen van het aantal geboorten als het aantal sterfgevallen kunnen fouten zijn opgetreden. Welke van de twee fouten doorlaggevend was of dat beide tot het verschil hebben geleid is nu niet bekend. Om de populatieaantallen van rund, paard en edelhart in de periode 1996-2010 te kunnen herberekennen is inzicht nodig in welke fout er is gemaakt en hoe groot deze is. Daarvoor is er in de komende jaren een extra en aangepaste monitoring nodig. Mede daarom verzocht Staatsbosbeheer in september.

Leeswijzer

Om een antwoord te vinden op de vraag van Staatsbosbeheer worden een aantal stappen doorlopen. Uitgangspunt vormt het door ICMO2 in 2010 uitgebrachte advies voor wat betreft de tellingen van de hoefdieren. Daarnaast is ook informatie gewenst over de geslachtsverhouding, sterfte (inclusief afschot) en aanwas, om trends te kunnen herleiden.

Hiervoor is een screening van de internationale literatuur over wildtellingen uitgevoerd die overigens ook kan worden gebruikt voor hoefdier tellingen in andere situaties. Het geheel leidt tot een concrete uitwerking van het ICMO2 advies inzake een telmethodiek, specifiek geschikt voor de Oostvaardersplassen.

ICMO2 (2010)

De minister van Landbouw, Natuur en Voedselkwaliteit stelde in 2010 aan ICMO2 (2010) de vraag:

welke zo betrouwbaar mogelijke en algemeen geaccepteerde methodologie zou u aanbevelen om de herbivoren te tellen (ICMO2, §1.2, p. 10)?

De aanbevelingen van ICMO2 luiden:

1. Methode
Als onderdeel van het toekomstig beheer beveelt ICMO2 aan ‘regelmatige tellingen vanuit de lucht van alle drie soorten’ (§4, p. 5 en brief vz. ICMO2 aan minister Verburg d.d. 24 september 2010 betreffende de voortgang van de evaluatie). Die soorten betreft Heckrund, Konikpaard en edelhert. Tellen vanuit de lucht wordt op basis van o.a. ervaringen in Schotland vertaald in tellingen vanuit een helikopter met gebruikmaking van luchtfoto’s (§2.1 Ecology onder vraag 4 p. 26).

2. Telmoment
Geschikte telmomenten zijn 1) eind maart - begin april en 2) oktober t.b.v. een onafhankelijke bepaling van aanwas en sterfte. De vereiste zichtbaarheid bedraagt >= 5 km. Beide telmomenten vallen buiten het broedseizoen. De verwachting luidt dat bij een vlieghoogte van 100-200m de verstoring van vogels en andere dieren laag zal zijn.

3. Telfrequentie
Om inzicht te krijgen in de nauwkeurigheid van dit type tellingen beveelt ICMO2 aan om de telling
- op drie achtereenvolgende dagen uit te voeren (schatting van de foutenmarge);
- te laten uitvoeren door onafhankelijke tellers die elkaars resultaat niet kennen.

4. Telprotocol
ICMO2 beveelt aan om hieruit een protocol voor de monitoring af te leiden.
2 HOEFDIERTELLINGEN

Soms houdt een telmethodiek (Engels: census) in dat de gegevens omtrent populatiegrootte worden verzameld door het nemen van een representatieve steekproef uit de populatie dan wel uit het gebied (Engels: sampling). Het gaat dan veelal om gebieden van duizenden ha groot met een gevarieerde vegetatie of terreingesteldheid (jong bos, oud bos, loofbos, naaldbos, heideterreinen, graslanden, hellingen, dalen etc.). In deze gevallen zal zogenaamd gestratificeerd bemonsteren nodig zijn. Daarop wordt hieronder dan ook nader ingegaan. In kleinschaliger of bijna geheel open gebieden is zo’n bemonstering vaak niet nodig. Soms kan het gehele gebied in één keer worden geïnventariseerd op bijvoorbeeld de aanwezigheid van hertachtigen (Mayle et al. 1999). Betrekkelijk eenvoudig kan men in dat geval eventueel de te bemonsteren eenheden of plots random kiezen. Dit behoort echter maar zelden tot de mogelijkheden en meestal zal men een keuze moeten maken uit andere technieken van bemonstering.

Bij elke hoefdiertelling spelen drie begrippen een rol (Mayle et al. 1999):
1. precieze (Eng. precision): hoe dicht liggen de herhaalde schattingen bij elkaar;
2. nauwkeurigheid (Eng. accuracy): hoe dicht ligt het geschatte gemiddelde bij het werkelijke aantal;
3. bias: de systematische foutencomponent, bij voorbeeld waarnemers bias.

Overal klinkt momenteel de roep om goedkope en gelijkertijd precieze en nauwkeurige inventarisatiemethoden (Merrigi et al. 2008; Groot Bruinderink & Van Breukelen 2009). Begrip 2, de nauwkeurigheid van de methode, is in de praktijk het lastigst in te vullen. Als we meerdere keren tellen, bijvoorbeeld een ochtend, de aansluitende avond en tweede ochtend, komen we als regel steeds op een andere aantal dieren uit. Beschouwen we de drie telrondes statistisch als drie onafhankelijke steekproeven, dan kunnen we een gemiddeld telresultaat berekenen en een betrouwbaarheidsinterval waarbinnen veel (95%) herhalingen van de telling zullen vallen. Stel het gemiddeld resultaat bedraagt 433 damherten met een betrouwbaarheidsinterval van 81 stuks. Dat betekent dat de meeste uitkomsten bij vele herhalingen van de telling zullen liggen tussen 352 en 514 damherten (433 ± 81; 95% zekerheid, toets voor kleine steekproeven). Dit betekent dat de kans dat we een resultaat rond de 433 krijgen het grootst is, maar we kunnen niet uitsluiten dat we af en toe rond de 500 zullen uitkomen (precieze).

Dit betrouwbaarheidsinterval zegt weinig over de werkelijke populatieomvang. Onbekend blijft immers welke fractie van het werkelijke aantal we tellen (ofwel missen; nauwkeurigheid).

Minimum number alive MNA
Daarnaast leveren die tellingen een maximum op voor bijvoorbeeld het aantal volwassen mannetjes, vrouwtjes etc. dat is gezien. Wanneer de aanname luidt: die leven minimaal
in dit gebied (MNA), dan kan de optelsom daarvan afwijken van het gevonden gemiddelde. Het is handig om beide waarden te presenteren.

Index of trend
Vaak bedient de beheerder zich van een trend of index over een reeks van jaren. Een zo nauwkeurig mogelijke index vereist consequent gebruik van eenzelfde methode over de jaren.
Altijd, maar zeker bij herhaalde tellingen met als doel een meerjarig overzicht, dienen de telresultaten bewaard te blijven als bron van informatie voor toekomstig onderzoek.

Een belangrijke tweedeling in de methoden is het onderscheid tussen indirecte waarnemingen en directe waarnemingen.

Indirecte waarnemingen

Als indirecte maat voor de presentie van hoefdieren kan worden gekozen voor het inventariseren van prenten of keutelhopen (Neff 1968). Het dusdanig lezen van prenten, bijvoorbeeld in spoorsneeuw, dat daaruit een dichtheid voor een bepaald gebied kan worden vastgesteld, is een methode met veel onzekerheden. We gaan daar op deze plaats niet nader op in.

Keutel(hoop) tellingen worden vooral in de UK gebruikt als maat voor de dichtheid van hoefdieren. In dat geval moet bekend zijn hoeveel keutelhopen een hoediersoort per tijdseenheid produceert en hoe lang een dergelijke hoop per vegetatietype blijft liggen. De mestdichtheid kan worden bepaald volgens de plot-clearance methode (Putman 1990; Mayle et al. 1999), waarbij de uitwerpselen steeds bij ieder veldbezoek van de transecten worden verwijderd, teneinde dubbeltellingen bij een volgend bezoek te voorkomen. Een transecttelling dient zoveel mogelijk door dezelfde twee waarnemers te worden uitgevoerd om de menselijke fout (bias) te minimaliseren (Neff 1968). Ook deze methode kent meer problemen dan oplossingen. Zo is niet altijd even duidelijk wat nu precies een mesthoop is. Ook de bemonsteringsfrequentie is problematisch: ze moet lang genoeg zijn om een representatief aantal mesthopen aan te treffen, maar kort genoeg om te voorkomen dat de periode tussen twee waarnemingen langer is dan de afbraaksnelheid van de mest. Achter de methode zit de aannamer dat dieren onafhankelijk van plaats, tijd en gedrag mest deponeren. In werkelijkheid is dit niet altijd het geval (Putman 1990).

Een ander nadeel van deze methode kan zijn, dat bij een lage populatiedichtheid de dataset teveel nulwaarden en een grote mate van variatie in aantallen uitwerpselen tussen de transecten vertoont, waardoor statistische interpretatie bemoeilijkt wordt. En tenslotte, mest van edelhert, damhert en ree kan ook lang niet altijd op soort gedetermineerd worden: coprologie is een vak apart! (Teurlings 2000).

Om het aantal keutelgroepen te kunnen vertalen in een aantal aanwezige dieren is het nodig om te weten hoeveel keutelgroepen per dier per tijdseenheid worden geproduceerd. Er is weinig gedegen onderzoek gedaan naar de keutelfrequentie van dieren, maar bekend is dat onder andere dieet sterke invloed kan hebben op de aantallen keutels per tijdseenheid.

Tekstkader 2 Keuteltellingen

Keuteltellingen lenen zich goed voor het vaststellen van een index maar slecht voor het vaststellen van de populatieomvang en -structuur. Uitvoering vereist geen dure apparatuur maar wel een relatief grote tijdsinvestering (Mayle 1999).
Directe waarnemingen

Directe waarnemingen van dieren spreken over het algemeen het meeste aan en liggen ook het meest voor de hand. Concentratie van de dieren in groepen, op aantrekkelijke of aantrekkelijk gemaakte plaatsen in het terrein, kan deze telmethode vergemakkelijken. Grote groepen kunnen echter een nauwkeurige telling bemoeilijken doordat alles door elkaar loopt. Het maken van foto- of filmopnamen is daarbij van groot belang. Voor de meeste hertachtigen geldt, dat individuele dieren moeilijk te onderscheiden zijn zonder kunstgrepen als oormerken o.i.d.

Methoden waarbij een schatting kan worden gemaakt van het deel van de populatie dat niet wordt gezien kunnen efficiënt zijn in termen van geïnvesteerde tijd. Dit geldt bijvoorbeeld voor de merk-terugvangst (terugzien) methode (mark-recapture of mark-resighting) maar het vangen en merken is, zeker bij grote populaties, duur en dieronvriendelijk. Zeker is de methode te duur voor grootschalige toepassing (Lebreton et al. 1992). Alternatieve methodes zijn de catch-per-unit effort (CPUE; Noss et al. 2005) of de lijn-transectmethode (Vincent et al. 1991, 1996; Focardi et al. 2002). We staan hierbij kort stil.

Zichtwaarnemingen vanaf de grond

Tekstkader 3 Zichtwaarnemingen vanaf de grond

Zichtwaarnemingen vanaf de grond zijn goed te gebruiken voor het schatten van de populatieomvang, het vaststellen van een index en het verkrijgen van informatie over de geslachts- en leeftijdsopbouw van een populatie. Ze zijn relatief goedkoop uit te voeren (Mayle 1999).

Zichtwaarnemingen vanuit de lucht

terreintype (bos/open veld) en de geleverde inspanning. Een experiment ter plaatse, bijvoorbeeld door een combinatie met een telling vanaf de grond, zal altijd moeten uitwijzen of en hoe goed het werkt.

Vliegtuigen, maar met name helikopters, kunnen verstorend werken op hoefdieren (Frid & Dill 2002; Fleming & Tracey 2008; Støen et al 2010; Tracey et al. 2010): de dieren gaan bewegen, en in sommige gevallen zelfs rennen, waarbij de verhoogde mobiliteit enkele uren kan aanhouden (Støen et al. 2010).

We gaan hier wat dieper op in vanwege de aanbeveling van ICMO2 om te tellen vanuit een helikopter.

a) artikel 11 van de Flora en fauna-wet (het is verboden, nesten, holen of andere voortplantings- of vaste rust- of verblijfplaatsen van dieren, behorende tot een beschermde inheemse diersoort, te beschadigen, te vernielen, uit te halen, weg te nemen of te verstoren).

b) artikel 19 d lid 1 van de Natuurbeschermingswet 1998 (het is verboden zonder vergunning, of in strijd met aan die vergunning verbonden voorschriften of beperkingen, van gedeputeerde staten of, ten aanzien van projecten of andere handelingen als bedoeld in het vierde lid, van Onze Minister, projecten of andere handelingen te realiseren onderscheidenlijk te verrichten die gelet op de instandhoudingsdoelstelling, met uitzondering van de doelstellingen, bedoeld in artikel 10a, derde lid, de kwaliteit van de natuurlijke habitats en de habitats van soorten in een Natura 2000-gebied kunnen verslechteren of een significant verstorend effect kunnen hebben op de soorten waarvoor het gebied is aangewezen). Zodanige projecten of andere handelingen zijn in ieder geval projecten of handelingen die de natuurlijke kenmerken van het desbetreffende gebied kunnen aantasten. De Zeearend heeft zelfs een protectiegebied van een kilometer hoog, laag, links en rechts.

Op basis hiervan zijn dan ook in het verleden door de beheerder van de Oostvaardersplassen diverse processen verbaal opgemaakt (mond. med. L. Smits, beheerder Staatsbosbeheer Oostvaardersplassen).
Tekstkader 4a Vliegtuig versus helikopter
Voor de telling van de hoefdieren in de Oostvaardersplassen werd in december 2010 aan
twee gespecialiseerde bedrijven een offerte gevraagd voor luchtfotografie, respectievelijk
met gebruik van een vliegtuig en een helikopter. Beide bedrijven wijzen het gebruik van
een helikopter af vanwege het verstoringsrisico en, in één geval, de hogere kosten. Beide
methoden ontlopen elkaar niet wat betreft de mogelijkheden van luchtfotografie, het
opstellen van een gedetailleerd vluchtplan, de (wijze van) uitvoering van de
meetvluchten, de resolutie van de beelden en het digitaal vastleggen van de resultaten.
Ofschoon in één geval geen opgave werd verstrekt van de analysekosten, lijken ook de
costprijzen vergelijkbaar.

Tijdens een handtelling kunnen vermoeidheid, de noodzaak om elk dier te tellen
(handtellers) of het simultaan tellen van meerdere soorten de nauwkeurigheid van de
telling negatief beïnvloeden (Flemming & Tracey 2008). Daarom heeft het tellen aan de
hand van luchtfoto’s de voorkeur boven directe tellingen (m.b.v. een handteller) door
waarnemers in het vliegtuig of de helikopter. Bijkomend voordeel is dat de bepaling van
het aantal dieren (op de foto’s) herhaalbaar en valideerbaar is door derden.

De ontwikkelingen in het gebruik van onbemande vliegtuigen en/of satelietbeelden
bevinden zich momenteel nog in een te pril stadium om de methode te benutten in de
Oostvaardersplassen. Onbemande vliegtuigen bovendien zijn nog niet toegestaan in het
Nederlandse luchtruim, zeker niet zo dicht bij Schiphol.

Tekstkader 4b Zichtwaarnemingen vanuit de lucht
Zichtwaarnemingen vanuit de lucht zijn goed te gebruiken voor het schatten van de
populatieomvang en het vaststellen van een index maar geven geen nauwkeurig beeld
de van de geslachts- en leeftijdsoopbouw van een populatie. De personele kosten zijn relatief
laag maar de benodigde uitrusting en analyse is duur (Mayle 1999). Ofschoon
gelijkbaar wat betreft kostprijs verdient het gebruik van een klein bemand vliegtuid
voorkeur boven een helikopter. Het voornaamste argument hierbij is het risico van
verstoring van de hoofdieren (waardoor een nauwkeurige telling wordt bemoeilijkt zo niet
ommogelijk wordt) en van vogels.

Capture-mark-recapture CMR en CPUE
Door middel van de capture-mark-recapture methode of de catch-per-unit-effort (CPUE)
kan op basis van het aantal gevangen dieren uit een populatie een schatting van de
totale omvang van die populatie worden gemaakt (Seber 1982). Het blijkt echter dat,
wanneer slechts een klein gedeelte van de populatie wordt gevangen, de nauwkeurigheid
van deze methode snel afneemt (Lancia et al. 1996). Ook staat vast dat in gebieden met
veel dekking (struiken, bos) het missen van een deel van de populatie en dus een
onderschatting van de aantallen een probleem kan zijn (Belant & Seamans 2000). De
CPUE kan vrij gemakkelijk worden vastgesteld maar kan worden beïnvloed door
aanpassingen in de benutting van de omgeving door een soort (dichtheid), bijvoorbeeld
als gevolg van de aanwezigheid van een predator en dus ook de tellers zelf (Lebreton et
al. 1992). CPUE indices, zoals het aantal edelherten gezien per waarnemer per dag, zijn
bovendien gevoelig voor de waarnemingsinspanning of schaal van het
waarnemingsgebied (Pettorelli et al. 2007). Denk daarbij bijvoorbeeld aan waarnemers
die hotspots opzoeken waarvan ze weten dat er veel dieren zitten (Jagers op Akkerhuis
2004).
Tekstkader 5 CMR en CPUE
Het gebruik van de methoden CMR en CPUE wordt aanbevolen voor het verkrijgen van een schatting en een index met name in sterk afwisselend en grootschalig landschap. De methode geeft een goed inzicht in de populatiestructuur. De uitvoering vergt erg veel tijd en is daarmee relatief kostbaar. De personele kosten zijn relatief laag maar de gebruikte uitrusting is duur (Mayle 1999).

Strata en lijntransecttellingen
Schattingen van aantallen hoefdieren kunnen worden bemoeilijkt omdat sommige wilde hoefdiersoorten in grote groepen door hun leefgebied trekken, ze zijn er niet altijd. Ook zijn inventarisaties lastig in bos-, duin- of andere structuurrijke gebieden. Soms wordt hiervoor een soort drukjacht zonder afschot georganiseerd, maar ook de eerder genoemde keuteltellingen en tellingen vanuit de lucht zijn ingebruik genomen. Als de waarschijnlijkheid groot is dat er binnen het studiegebied variatie optreedt in gemeten factoren, bijvoorbeeld in de vervalsnelheid van keutelhopen in verschillende habitats of in de zichtbaarheid van hoefdieren afhankelijk van boomsoort en -leeftijd, dan wordt gestratificeerd waarnemen of monsternemen van belang (Engels: stratified sampling). Hiervoor wordt het gebied opgedeeld in zg. strata: groepen van gelijke eenheden (vegetatie- of landschapstypen). Van elk stratum wordt een onafhankelijk random monster genomen en de schatting van de totale populatie wordt dan berekend door de gemiddelden van de strata te combineren en te vertalen naar het gehele gebied.

Bij het gebruik van lijntransecten worden waarnemingen over strata langs vaste transecten in het landschap gedaan. Vaak wordt daarbij gebruik gemaakt van het bestaande net aan wegen en paden. De lijntransecten kunnen worden beschouwd als lange en smalle rechthoeken. De dichtheid van de dieren per stratum kan worden berekend met behulp van de totale lengte van het transect c.q. de transecten en het aantal dieren dat is gezien binnen een vastgestelde afstand tot de transecten (Vincent et al. 1991; 1996; Buckland et al. 2004). Hiervoor is het programma DISTANCE beschikbaar (http://www.ruwpa.st-and.ac.uk/distance/).

Aan deze methode kleven in het algemeen dezelfde bezwaren als aan de zichtwaarnemingen: in dichte vegetatietypen wordt weinig waargenomen. De methode is gevoelig voor verstoring van hoefdieren door de waarnemer (vluchtgedrag vergroot de waarnemingsafstand wat leidt tot een onderschatting van de populatie) en is bovendien arbeidsintensief.

Tekstkader 6 DISTANCE
Het gebruik van de methode DISTANCE wordt aanbevolen voor het verkrijgen van een schatting en een index met name in sterk afwisselend landschap. De methode geeft een goed inzicht in de populatiestructuur. De uitvoering vergt erg veel tijd en is daarmee relatief kostbaar. Tegenover de relatief hoge personele kosten staan de lage kosten van de benodige uitrusting (Mayle 1999).

Hulpmiddelen
Standaard uitrusting voor een teller zijn een verrekijker en/of telescoop. Daarnaast wordt gebruik gemaakt van schijnwerpers, verschillende typen camera’s en restlichtversterkers en warmtebeelden.
Schijnwerpers
Nachtelijke observaties met behulp van schijnwerpers worden vaak gebruikt om aantallen hertachtigen te schatten. Er zijn relatief weinig kosten mee gemoed, het is eenvoudig, verstoring is minimaal bij juiste toepassing en het biedt de mogelijkheid reeksen over jaren met elkaar te vergelijken (Belant & Seamans 2000; Simon et al. 2008). Problemen duiken op bij slecht weer en dichte vegetaties, geringe afstand tot de dieren/tot de waarnemer, en problemen met lichtreflectie. Ook is deze methode onnauwkeurig als het gaat om het vaststellen van de populatiestructuur (leeftijds- en geslachtsoopbouw; McCullough 1982). Bij gebruik van de schijnwerpermethode worden al gauw de dichtheden aan hertachtigen overschat op open terrein en onderschat in gesloten vegetaties (McCullough 1982).

Camera’s
Naast het welhaast voor de hand liggend, ondersteunend gebruik bij tellingen vanaf de grond of vanuit de lucht, kunnen camera’s worden gebruikt voor detectie op afstand (time lapse en triggered camera of video systemen). Deze methode vindt brede toepassing in ecologisch onderzoek. Denk aan voedselecologie, identificeren van ei- en nestpredatie, documenteren van (broed)gedrag e.d. (Cutler & Swann 1999). Nadeel is het optreden van technische problemen, de frequentie van de monitoring, het gegeven dat de apparatuur opvalt voor dier en mens (diefstal), de verstoring door andere soorten dan de bestudeerde soort en gewenning aan aas. Aantallen opnames met cameravallen bleken in een studie naar hoefdieren in tropische bossen een goede schatter voor dichtheden (Rovero & Marshall, 2009), maar schattingen van aantallen/dichtheden zijn niet uitvoerbaar bij hoge dichtheden als in de Oostvaardersplassen.

Versterking (rest)licht en gebruik infrarood
Allison & Destefano (2006) schreven een review over uitrustingen en technieken om bij geringe lichtsterkte, in het donker dieren waar te nemen door beeldversterking (bv. restlichtversterkers). Hun conclusie is dat hiermee een belangrijk hulpmiddel beschikbaar is voor nachtelijke studies van wildlife. Echter, er blijven problemen bestaan met contrast, slecht weer, groepsgrootte en dichtheid. Restlichtversterkers verzamelen licht uit de onderste waarden uit het infrarood spectrum, versterken de fotonen (lichtdeeltjes) en zetten ze om in elektrische energie.

De ontwikkeling van het gebruik van warmtebeelden (Engels: thermal imaging) in ecologisch onderzoek gaat snel (Boonstra et al 1994; Drake et al. 2005). Er wordt in toenemende mate gebruik gemaakt van het detecteren (opsporen) van dieren met behulp van apparatuur die onderscheid maakt tussen de hoeveelheid warmte die de dieren uitstralen en hun omgeving. Die warmtestraling bevindt zich in het z.g. thermisch infrarood deel van het stralingsspectrum: bij het gebruik van warmtebeelden worden de hoogste waarden uit het infrarood lichtspectrum verzameld en uitgestraald als warmte. De toepassing is veelal militair of industrieel van aard, maar thermisch infrarood wordt in toenemende mate ook gebruikt bij faunatellingen. Er zijn handzame monoculaire, binoculaire, camera’s en wapenjagers. De huidige apparatuur maakt waarnemingen op grote afstand mogelijk, heeft een hoge resolutie (een helder beeld) en is gevoelig voor zeer kleine temperatuurverschillen. Apparatuur is in de handel voor een prijs variërend van 1000 tot tienduizenden Euro’s.

Drake et al. (2005) vergeleken tellingen van witstaartherten (Odocoileus virginianus) vanuit de auto met tellingen die met behulp van Forward-Looking Infrared (FLIR) sensoren over het zelfde traject waren verkregen. Beide methoden leverden een vrijwel identieke resultaat: 229 (SE 10,04) en 214 (SE = 18,7; P=0,46). Dit ‘vooruit gericht’ thermisch infrarood detectiesysteem FLIR kan eenvoudig aan de vleugel van een vliegtuig of aan het onderstel van een helikopter worden gemonteerd. In dit geval vloog
De heli op een hoogte van ca. 150 m met een snelheid van ca. 80 km/h. Drake et al. (2005) trekken een aantal belangwekkende conclusies over het gebruik van deze techniek:

1. De IR techniek kan een bruikbaar alternatief zijn wanneer de zichtbaarheid van de dieren op een of andere wijze wordt belemmerd.
2. Wat blijft is onduidelijkheid over de vraag welk deel van de totaal aanwezige populatie wordt gezien.
3. De techniek laat ruimte voor subjectieve interpretaties van wat wordt gezien. De plek waar een dier zich bevindt, bijvoorbeeld open terrein of dicht bos, kan de nauwkeurigheid van de IR-detectie beïnvloeden. Ook dubbeltellingen, bijvoorbeeld als gevolg van vluchtgedrag van open terrein naar dekking, kunnen de telresultaten beïnvloeden (Gill et al. 1997). Het onderscheid tussen landbouwhuisdieren en herten is soms lastig te maken.
4. Toekomstig onderzoek naar toepasbaarheid en nauwkeurigheid vergt dan ook een op andere wijze verkregen nauwkeurige schatting van de populatieomvang.
5. In vergelijking met andere methoden is de IR-methode duur (ca. 8 keer zo duur als een telling vanaf de weg).
6. Het weer moet meewerken met bijvoorbeeld een zichtbaarheid > 5 km, de omgevingstemperatuur mag niet hoger zijn dan 13 °C en loofbomen moeten geen blad dragen. Toepasbaar in de winter dus en bij voorkeur 's nachts wanneer de dieren de dekking verlaten.
7. Laagvliegende helikopters jagen de dieren de dekking in.

Dit verhaal wordt ondersteund door de resultaten van een studie van Dunn et al. (2002) met edelherten (wapiti; *Cervus elaphus canadensis*) met gebruikmaking van de zelfde FLIR-techniek, in open terrein afgewisseld met bos. Edelherten konden worden onderscheiden van landbouwhuisdieren en muilid hierherten op basis van een combinatie van morfologie en warmtestraling. Belangrijk bij dit laatste was dat alleen de edelherten een zodanig goed isolerende pels in de nekstreek hebben, dat de nek wegvalt uit het warmtebeeld. Lastig was dat het opgaand naaldbos (*Pinus ponderosa*) dezelfde warmtestraling had als de edelherten. FLIR had dus geen meerwaarde boven zichtwaarnemingen. De auteurs voeren daartoe drie redenen aan:

1. de dieren zijn te goed geïsoleerd;
2. de kale bodem straalt te veel warmte uit zodat edelherten niet afsteken;
3. detectie werd verhinderd door de kronen van de naaldbomen.

Focardi et al. (2001) vergeleek het resultaat van thermal infrared (TI) met schijnwerpertellings (ST) voor edelhert, damhert, wild zwijn, vos, konijn en haas. Gemiddeld werden 53,8% van het aantal dieren dat met TI werd gespot ook gezien met de ST. Voor het wilde zwijn was dit slechts 18%, en voor damhert en vos maakte het niet zoveel uit. Bij het edelhert was TI efficiënter m.u.v. de winterperiode. Groepen mannelijke edelherten werden beter gezien met TI dan met ST. Op korte afstand werd bij het wilde zwijn met TI het beste resultaat bereikt (geen reflecterende tapetum lucidum in de ogen en dus minder zichtbaar bij ST).

Een in deze onderzoeken niet genoemd voordeel van deze techniek kan zijn de relatief eenvoudige organisatie (er zijn weinig mensen bij betrokken: goedkoop) en het feit dat alle beelden digitaal worden vastgelegd. Gemiddeld leverde de IR-telling van Dunn et al. (2002) ca. 50% van de traditionele zichtwaarnemingen op de grond. Ook Haroldson et al. (2003) zien gemiddeld 56% van een populatie witstaartherten m.b.v. IR-detectie vanuit de lucht in een loofbosrijke situatie.
Mond. med. R. Ghauharali, Firma Ecoflight (ervaringsdeskundige):
« Thermisch IR (TIR) is wel interessant, maar is slecht te combineren met een luchtfotografie vlucht, omdat:
1. TIR doe je het liefst ’s nachts. Overdag heb je het risico dat er valse contrasten ontstaan: grond warmt anders op dan takken / bomen, zeker als er veel zon is. Die valse contrasten zorgen voor een heel heterogene achtergrondbeeld, dat de detectie van herten heel complex kan maken. Als er geen zon is, is dit effect minder. Maar als er weinig licht is, levert luchtfotografie weer slechte resultaten. En ’s nachts is luchtfotografie, zelfs met contrastversterking in de analyse, onmogelijk.
2. TIR camera’s zijn traag: lange sluitertijden om een beeld op te bouwen. Dus TIR opnames maak je vanaf grote hoogte, om weinig beeldversmering te krijgen. Maar grote hoogte = slecht beelddetail (voor zowel TIR als luchtfotografie) en dat is zonde voor de luchtfotografie. »

Tekstkader 7 IR-methoden
Het gebruik van de IR-methoden is geschikt voor het schatten van de populatieomvang en het ontwikkelen van een index, vooral in erg open landschap. De methode geeft geen goed inzicht in de populatiestructuur. De methode is lastig te combineren met en operationeel complexer dan true colour luchtfotografie. De uitvoering vereist het gebruik van relatief dure uitrusting t.o.v. luchtfotografie, maar de te investeren tijd is relatief gering (Mayle 1999).
CONCLUSIES

Nu een aantal directe en indirecte waarnemingsmethoden de revue is gepasseerd kunnen een aantal algemene conclusies worden getrokken. Hierbij speelt de wens van ICMO2 om inzicht te krijgen in de nauwkeurigheid van de tellingen een belangrijke rol.

Van belang in relatie tot het inventariseren van de aantallen hoefdieren in het algemeen is het volgende:

- de werkelijke aantallen hoefdieren in de gebruikte studies zijn meestal niet bekend, waardoor calibratie naar de werkelijkheid niet mogelijk is;
- er is weinig informatie beschikbaar over de variatie in de uitkomsten bij gebruik van zowel één als verschillende technieken;
- hetzelfde geldt voor de kosten van de gebruikte methode (hoe nauwkeuriger de gewenste informatie, des te meer tijd en geld gaat zitten in de methode).

Nadere uitwerking ICMO2 advies Oostvaardersplassen

De resultaten van voorgaande analyse (tabel 1) leiden tot een aanscherping van het ICMO2-advies op de volgende punten:

- het overwegend open karakter van de Oostvaardersplassen maakt directe observaties mogelijk, zowel vanaf de grond als vanuit de lucht;
- voor het vaststellen van de aantallen/soort wordt een telling vanuit de lucht aanbevolen m.b.v. foto- en IR-beelden;
- voor het vaststellen van leeftijden- en geslachtsstructuur/soort wordt een telling vanaf de grond aanbevolen.

<table>
<thead>
<tr>
<th>Methode</th>
<th>Geschikt voor vaststellen van</th>
<th>Investering in</th>
<th>geschikt voor OVP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>schatter omvang</td>
<td>Schatter geboorte/sterfte</td>
<td>Index omvang</td>
</tr>
<tr>
<td>Direct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zicht_grond</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Zicht_lucht</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>IR_land</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>IR_lucht</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>CMR</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>CPUE</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Distance</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Indirect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keuteltellingen<sup>1</sup></td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

1): in de UK worden keuteltellingen als slecht (1) tot goed (4) gekwalificeerd, afhankelijk van de gebruikte techniek; het betreft dan veelal gebieden met veel dekking en ondergroei (Mayle et al. 1999).

Voor een correcte implementatie van het ICMO2 advies wordt voor 2011 de uitvoering van een aantal activiteiten geadviseerd (I t/m IV; Tabel 2).
I. Pilot in januari 2011 met Evaluatie

Ten behoeven van het ontwikkelen en ijken van de juiste methodiek en het vastleggen van de 0-situatie m.b.t. de omvang van de populaties wordt een pilot uitgevoerd in januari 2011. In deze pilot wordt:
A) de telling vanuit de lucht tweemaal met een vliegtuig uitgevoerd met tussenpozen van maximaal enkele dagen (Bijlage protocol 1). De keuze om te vliegen met het vliegtuig is gemaakt vanuit het gegeven dat navraag bij de provincie Flevoland (bevoegd gezag NB-wet) en externe deskundigen leerde dat binnen de gegeven termijn de afgifte van een vergunning/ontheffing voor het vliegen met een helikopter in januari niet te verwachten was. Inmiddels (februari 2011) is dit door de provincie bekrachtigd in haar reactie op de formele NB-wet aanvraag van Staatsbosbeheer voor vergunning/ontheffing voor het tellen met een helikopter, waarbij de provincie Staatsbosbeheer vraagt een passende beoordeling uit te voeren;
B) de reactie van de dieren op het (verschijnen van het) telvliegtuig vastgesteld (Bijlage protocol 2);
C) de precisie en nauwkeurigheid van de luchttelling gecheckt door deze telkens te combineren met een telling door een rijploeg vanaf de grond (Bijlage protocol 3);

Tekstkader 8 Argumentatie pilot januari 2011
In januari 2011 zijn er nog geen kalveren en veulens van 2011 en is nog vrijwel geen wintersterfte geweest. Een goed moment voor een 0-meting van de omvang van de populaties dus. De populatiestructuur krijgt later in het jaar (augustus 2011) aandacht. Voor een telling van de Heckrunderen en Konikpaarden is dit geen probleem, vooral niet wanneer een periode met goed weer wordt gekozen (de dieren staan dan vooral op het open grasland). In januari trekken de edelherten zich echter traditioneel voor een deel terug in het moeras en het bos. Tellen vanaf de grond is dan langs de Oostvaardersdijk, de Knardijk, in de Aalscholverkolonie, het Oostvaardersbos (voorheen Fluitbos) en de Driehoek een probleem. Dit onderschrijft de noodzaak van ‘luchtsteun’.

Voor het calibreren van de waarnemingen vanuit de lucht en de reactie van de dieren op het vliegtuig zijn min of meer gelijktijdige tellingen door een rijploeg vanaf de grond noodzakelijk. Dit heeft te maken met de op pag. 3 beschreven precisie, nauwkeurigheid en bias.
Idealiter zou ook de telling vanaf de grond in januari 2011 twee maal worden uitgevoerd. Dit is echter niet haalbaar omdat dit de periode is dat het reactief beheer in volle gang is. De beheerder geeft aan dat een telling van Heckrunderen en Konikpaarden in het droge deel van de Oostvaardersplassen met twee tellers in een auto goed uitvoerbaar is.

En tenslotte: in het ideale geval wordt ook het effect van vliegen op de aanwezige vogels gemonitord. ICMO2 adviseert weliswaar om in maart/april en oktober te vliegen (buiten broedseizoen), maar ook het verstoren van ‘niet-broedvogels’ is ongewenst (FF-wet).

Ibis. Evaluatie pilot januari 2011

Bij de evaluatie van de pilot van januari 2011 zijn de volgende vragen aan de orde:

a) Wat is de meerwaarde van een telling vanuit de lucht boven een telling met een rijploeg
 vanaf de grond voor het vaststellen van de omvang van de populaties?
b) Wat is de meerwaarde van 2 tellingen vanuit de lucht boven 1?
c) Wat is de meerwaarde van het gebruik van thermisch infrarood boven het gebruik van kleurenfotografie voor het vaststellen van de omvang van de populaties vanuit de lucht?
d) Wat is de meerwaarde van 2 tellingen vanaf de grond door een rijploeg boven 1?

De beheersadviescommissie OVP wordt gevraagd een advies over de evaluatie uit te brengen alvorens de tellingen in maart/april en oktober worden uitgevoerd

II. Overige tellingen in 2011

a) Conform het ICMO2 advies dient te worden geteld in 1) maart-april en 2) oktober voor een onafhankelijke bepaling van aanwas en sterfte en met behulp van de protocollen 1 t/m 3.
b) De daarbij gehanteerde methode hangt af van de evaluatie van de pilot van januari 2011.

Ook deze tellingen worden geëvalueerd cf. de daarbij gestelde vragen voor zover relevant onder het kopje 'Evaluatie pilot januari 2011'.
c) Tussentijds wordt medio augustus een telling vanaf de grond gemaakt, zowel m.b.v. vaste telploegen als van een rijdende telploeg (volgens protocol 3). Bij de evaluatie hiervan zijn de belangrijkste vragen (c1 en c2):

 c1. Wat is de meerwaarde van het tellen met een groot aantal vaste telposten boven een telling door een rondrijploeg?
 c2. Wat is de leeftijds- en geslachtsoopbouw van de populaties?
d) De aantallen kalveren en veulens en ook de sterfte worden jaar rond wekelijks gemonitord (ieder dier dat sterft, natuurlijk of door afschot, wordt in protocol vastgelegd).

III. Evaluatie einde 2011 ten behoeve van handelingen in 2012 en volgende jaren

Eind 2011 is een jaar lang ervaring opgedaan met verschillende telmethoden cf. de aanbevelingen in dit rapport. Voorgesteld wordt om op dat moment, opnieuw een evaluatiemoment in te bouwen en te besluiten wanneer en hoe in volgende jaren wordt geteld.

IV. Uitvoering en delen van de ervaringen

Aanbevolen wordt volledige transparantie naar de buitenwereld door bijvoorbeeld publikatie van het telresultaat in de media, betrokkenheid van stakeholders bij de evaluaties en door het beschikbaar stellen van de resultaten inclusief de luchtfoto’s aan derden of een eigen technisch rapport op internet. Communicatie over de telling naar derden berust dan ook bij de beheerder. Na de tellingen worden geen voorlopige uitslagen bekend gemaakt en de pers wordt slechts door daarvoor aangewezen personen te woord gestaan.

Wanneer de tellingen cf. voorliggend advies zijn uitgevoerd is een schat aan gegevens beschikbaar m.b.t. dit onderwerp. Voor een optimaal rendement hiervan zal hierover aan het einde van 2011, begin 2012 een Nederlandstalige rapportage verschijnen en gepubliceerd. Aanbevolen wordt te overwegen voor zowel participatie bij de uitvoering als voor het co-auteurschap van bedoeld artikel mede externe expertise aan te trekken.
Tabel 2. Schematisch overzicht van telmomenten en evaluaties in 2011. Hieraan kan worden toegevoegd dat in alle maanden de registratie van aanwas en sterfte wordt bijgehouden

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilottelling</td>
<td></td>
</tr>
<tr>
<td>Evaluatie pilot</td>
<td></td>
</tr>
<tr>
<td>ICMO2-telling</td>
<td></td>
</tr>
<tr>
<td>‘Dubbele’ telling vanaf de grond</td>
<td></td>
</tr>
<tr>
<td>Evaluatie 2011</td>
<td></td>
</tr>
<tr>
<td>Rapportage</td>
<td></td>
</tr>
<tr>
<td>Aanwas</td>
<td></td>
</tr>
<tr>
<td>Sterfte</td>
<td></td>
</tr>
</tbody>
</table>
DEEL II. DATAOPSLAG
1 NOODZAAK SPECIALE DATAOPSLAG

Inleiding

Er wordt in het kader van de monitoring van de hoefdieren van de Oostvaardersplassen op verschillende wijzen systematisch waargenomen. SBB stelt zich als doel deze gegevens duurzaam op te slaan en ze beschikbaar te maken voor derden ten behoeve van onderzoek. Daarnaast dienen de gegevens van hoefdieren in de Oostvaardersplassen, vaker dan voor andere gebieden, in verschillende vormen (samengevat, ruwe data, overzichten per jaar) beschikbaar kunnen worden gemaakt ten behoeve van vorming van beleid en beheer.

Bij de telprojecten (Deel I van dit rapport) worden natuurlijk de doelgegevens, zoals locatie, soort, geslacht etc. verzameld. Maar ook allerlei andere gegevens zijn van groot belang voor de interpretatie van deze doelgegevens. Hierbij moet men denken aan zaken als de weersomstandigheden rond de telling, de duur van de telling, de methode, de teller, en overige bijzonderheden. Deze ‘gegevens over gegevens’ noemt men metadata.

Huidige situatie

Tot heden werden de telgegevens vastgelegd in Excelbestanden, voor elk teljaar één bestand. Excel-bestanden zijn echter kwetsbaar: ze zijn eenvoudig (per ongeluk) te wijzigen, lastig te bevragen en te bewerken. Ze zijn, kortom, voor goed databeheer onvoldoende geschikt.

Daarnaast heeft SBB heeft een gegevenssysteem, Kievit. In dit GIS systeem worden waarnemingen in vlak, lijn, of punt vastgelegd. Dit systeem is echter vrij generiek: de zo belangrijke metadata kan hierin niet worden vastgelegd. Daarbij is er voor het bevragen van het systeem kennis van GIS nodig. Omdat beide bestaande methoden niet voldoen aan de doelstelling, bevelen we aan de gegevens op een systematische wijze vast te leggen, in één daarvoor ontworpen database: de OVP hoefdieren-database.

OVP hoefdieren-database

De OVP hoefdieren-database wordt een relationele database, waarin alle doelgegevens en metadata die worden verzameld over hoefdieren kunnen worden vastgelegd en eenvoudig worden opgevraagd, in verschillende typen overzichten en optellingen.

Beheer

We adviseren dat er één persoon wordt aangewezen die verantwoordelijk is voor het beheer van de database: deze persoon zorgt ervoor dat nieuwe gegevens worden ingevoerd, en dat zo nodig de database wordt aangepast aan nieuwe ontwikkelingen en wensen.

Het is overigens niet nodig dat deze persoon kundig is op gebied van databank-ontwikkeling of programmeren, maar weet hoe en door wie de gegevens verzameld worden, voor wie de gegevens te raadplegen moeten zijn en door wie de gegevens gebruiken zullen worden.

Invoer

Invoer gaat door middel van speciale digitale invoerformulieren, die idealiter een directe afspiegeling zijn van de veldformulieren: zo wordt de kans op fouten bij invoer verkleind. Een voorbeeld is gegeven in de onderstaande figuur. Achter dit eenvoudige
invoerformulier ligt een veel complexere databasestructuur met tabellen voor tellingen, voor objecten, en voor tellers.

Figuur 1. Twee invoerschermen voor de database “Monitoring vleermuizen op kerkzolders”. Een formulier is voor de invoer van objectgegevens, een voor telgegevens per jaar. Van elk object hoeven zo maar 1x de gegevens ingevoerd te worden.

Gegevens worden van formulier ingevoerd in de databank. Het formulier krijgt een volgnummer, dat ook wordt opgenomen in de database, en het formulier wordt opgenomen in het NMA.
We adviseren om foutcontroles door te voeren, zodat typefouten in datum of aantal niet mogelijk zijn. Bijvoorbeeld: bij een afschot van meer dan 5 dieren op een dag moet de invoerder dit extra bevestigen, bij afschot midden in de zomer moet de invoerder dit bevestigen, etc.

Bevragingen
De gegevens kunnen worden weergegeven of samengevat door middel van gestandaardiseerde bevragingen (queries), via een keuzescherm. Stel, men wil een overzicht van het aantal geschoten dieren per jaar. Via een formulier kan dan soort, type waarneming (afschot), en de resolutie (“jaar”) worden ingevuld, waarna een staatje van aantal per jaar afgeschoten dieren, per soort, wordt uitgevoerd in een Excel-bestand. Veel voorkomende queries kunnen worden klaargemaakt voor de eindgebruiker, en bij nieuwe vragen kunnen eenvoudig nieuwe queries worden geprogrammeerd.

Export voor Kievit
We adviseren de “platte data” te exporteren en op te nemen in de “generieke database” van SBB, Kievit. De export voor Kievit bevat de vaste velden van deze database (soort, locatie, datum), plus projectinformatie: “Afschot OVP” voor de geschoten dieren”, “Doodvondst OVP” en “Geboorte OVP” voor waarnemingen van gestorven, en geboren dieren”, “Luchtfoto OVP” voor op luchtfoto vastgelegde dieren.
2 STRUCTUUR DATA

In het onderstaande overzicht is weergegeven welke handelingen of projecten hoefdierengegevens opleveren, en waarvoor de database dus geschikt moet zijn.

- Telling kalveren runderen en veulens
- Telling kalveren edelhert
- Monitoring natuurlijke sterfte
- Afschot
- Luchttellingen van totale populaties
- Grondtelling(en) van totale populaties
- Vaststellen geslachtsverhouding en leeftijdscategorieën
- Visuele conditiescore rund, paard edelhert
- Screening ziektes door GD
- Terreingebiedsrand, paard en edelhert en ganzen\(^1\)

1) Bij het vastleggen van het terreingebied van de grote herbivoren worden tegelijkertijd de ganzen meegenomen. Dit omdat ganzen enerzijds de grote herbivoren volgen (geschikte graslanden), maar anderzijds ook als concurrent optreden in de winter. De maandelijkse ganzentellingen leveren dit inzicht in veel mindere mate dan de terreingebiedswaarnemingen.

Deze verschillende typen gegevens en de wijze waarop deze zullen worden opgeslagen, worden hieronder een voor een besproken. In het algemeen bestaat de dataopslag per project uit een of twee tabellen. In dat laatste geval gaat het veelal om een verzameltabel, bijvoorbeeld van telrondes of vluchten, met daaraan gekoppeld de waarnemingen per telronde, of vlucht.

Gegevens van individuen, met één tijd en plaats
Het gaat hierbij om de geschoten dieren, dood gevonden dieren en de tellingen van geboortes. Deze kunnen in principe in dezelfde, platte tabel.

- X-coördinaat (in meter)
- Y-coördinaat (in meter)
- Datum
- Dag (automatisch gegenereerd uit datum)
- Maand (automatisch gegenereerd uit datum)
- Week (automatisch gegenereerd uit datum)
- Jaar (automatisch gegenereerd uit datum)
- Tijd
- Soort
- Geslacht
- Leeftijd
- Dood/Geschoten/levend
- Conditie
- Doodsoorzaak of reden voor afschot
- Bestemming kadaver (afvoer destructie, afvoer gezondheidsdienst, in veld laten liggen
- Gewicht (facultatief)
- Waarnemer
- Bijzonderheden

Tellingen vanaf de grond
Er worden twee typen tellingen vanaf de grond onderscheiden: transecttelling met kleine groepen in auto’s, en punttellingen vanuit vaste telposten. De transecttellingen leveren een totaal aantal per soort, geslacht en leeftijd. De methode is nader omschreven in deel 1 van deze rapportage.

Tabel 5. Grondtelling vanuit vaste telpost.

- Teldag: (volgnummer per jaar: 2011a, 2011b, etc).
- Telpostnummer:
- Ligging telpost (Kavelnummer):
- Ligging telpost (XY coördinaat): (kan gegenereerd: coördinaat van midden van kavel)
- Volgnummer waarneming:
- Tijdstip:
- Diersoort:
- Totaal aantal dieren in de groep:
- Richting van waaruit de groep aankwam:
- Richting waarin groep vertrok:
- Waarnemers: (namen tellers)
- Bijzonderheden telpost (verstoring, bijzondere situatie, of bijzondere ligging, etc.):
- Facultatief:
 - aantal volwassen mannelijke dieren;
 - aantal volwassen vrouwelijke dieren;
 - aantal volwassen dieren van onbekend geslacht;
 - aantal mannelijke jaarlingen;
 - aantal vrouwelijke jaarlingen;
 - aantal jaarlingen van onbekend geslacht;
 - aantal mannelijke veulens/kalveren;
 - aantal vrouwelijke veulens/kalveren;
 - aantal veulens/kalveren van onbekend geslacht.

Gekoppeld aan:

- Teldag: (volgnummer per jaar: 2011a, 2011b, etc).
- Datum
- Dag (automatisch gegenereerd uit datum)
- Maand (automatisch gegenereerd)
- Week (automatisch gegenereerd)
- Jaar (automatisch gegenereerd)
- Aantal telposten:
- Start telling (tijd):
- Einde telling (tijd):
- Weer:
- Bijzonderheden telling:

Luchtfoto-waarnemingen

Dit betreft de dieren die geteld worden op de luchtfoto’s. Deze gegevens zullen afkomstig zijn uit de GIS waarmee de dieren op de luchtfoto’s zijn geïdentificeerd. De gegevens van elk dier (Tabel 5) worden gekoppeld aan een tabel met vluchten. De vluchtgegevens hoeven dan maar eenmaal worden ingevoerd. De gegevens kunnen dan eenvoudig per vlucht, of per jaar, gesommeerd worden.

Opmerking

Luchtfotografie vergt simultaan waarnemen in de bossen (Fluitbos, Kotterbos) waar je de dieren minder goed kunt zien op de luchtfoto. Deze twee typen van tellingen moeten dus aan elkaar worden gekoppeld. Dat kan via teldatum.
De foto’s zelf kunnen niet in Access worden bewaard, maar bijvoorbeeld wel in het GIS systeem van SBB. Wel dient er in dat geval in de metadata van deze tellingen een verwijzing naar de locatie van de foto’s in het GIS systeem te staan.

Tabel 6. Luchtfoto-waarnemingen

- X- coördinaat:
- Y- coördinaat
- Soort:
- Geslacht:
- Leeftijdsklasse:
- Vluchtnummer:

Gekoppeld aan:

- Vluchtnummer:
- Datum:
- Dag (automatisch gegenereerd uit datum)
- Maand (automatisch gegenereerd)
- Week (automatisch gegenereerd)
- Jaar (automatisch gegenereerd)
- Starttijd:
- Eindtijd:
- Foto’s: (aantal foto’s)
- Infrarood/True colour:
- Piloot:
- Teller: (wie heeft de telling op de foto’s verricht).
- Bijzonderheden vlucht
- Temperatuur:
- Regen:
- Wind:
- Windrichting:

Vaststellen geslachtsverhouding en leeftijdscategorieën

Dit gebeurt een maal per jaar. Van miminaal 3 steekproeven van de totale populaties worden geslacht en leeftijd bepaald, om zo een beeld van geslachtsverhouding en leeftijdsoopbouw van de kuddes te verkrijgen.
Het is daarbij van belang de keuze voor de steekproef vast te leggen.

Tabel 7. Datastructuur bepalen geslacht- en leeftijdsverhoudingen

- Volgnummer telling
- Diersoort
- Geslacht
- leeftijdscategorie

Gekoppeld aan:

- Volgnummer telling
- Datum telling
- Methode
- Aantal tellingen
- Geteld gebied
- Waarnemer
Maandelijks visuele conditiescore rund, paard edelhert
Maandelijks worden van een steekproef van de totale populaties de condities van rund, paard en edelhert bepaald. Deze gegevens kunnen in een enkele tabel opgenomen, maar we raden aan een legendar tabel met beschrijving van de scores toe te voegen.

Vanaf 1990 tot op heden wordt er in de OVP voor rund en paard een indeling van deze conditie in 10 klassen gehanteerd.

Tabel 8. Datastructuur bepalen condities.

| - Ronde (volgnummer per jaar, in principe gelijk aan |
| - Datum |
| - Maand (automatisch gegenereerd) |
| - Jaar (automatisch gegenereerd) |
| - Soort |
| - Geslacht |
| - Leeftijds categorie |
| - Score |
| - Waarnemer: (persoon die de conditie scoorde) |

Gekoppeld aan legendar tabel:

- Score
- Aantal conditie klassen
- Omschrijving score

Screening ziektes door GD
Jaarlijks wordt door de GD een aantal dieren bemonsterd op ziektes. Deze gegevens dienen ook te worden vastgelegd.

Tabel 9. Datastructuur Screening ziektes

| - Datum monstername |
| - Soort |
| - Geslacht |
| - Leeftijd |
| - Conditiescore |
| - Nemer monster |
| - Monsternummer |
| - Uitslag |

Terreingebraak hoefdieren
Wekelijks wordt het terreingebraak van de dieren vastgelegd. Hiertoe wordt bepaald hoeveel dieren van elke soort het aantal dieren per soort zich in elk kavel bevinden. Hier worden dus ook ganzen geteld. Het terreingebraak wordt bepaald op schaal van vakken binnen kavels. Kavels zijn 500x1200 m. groot, en daarbinnen liggen “vakken”, van ca. 250x250m groot. Deze detailering is van belang voor koppeling terreingebraak aan vegetatietypen en om eventueel concurrentie/facilitatie tussen grote-kleine herbivoren te bepalen.
Tabel 10 Datastructuur wekelijks terreingebraak

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum</td>
<td>Datum</td>
</tr>
<tr>
<td>Week</td>
<td>Week (automatisch gegenereerd uit datum)</td>
</tr>
<tr>
<td>Jaar</td>
<td>Jaar (automatisch gegenereerd uit datum)</td>
</tr>
<tr>
<td>vaknummer</td>
<td>vaknummer</td>
</tr>
<tr>
<td>Diersoort</td>
<td>Diersoort</td>
</tr>
<tr>
<td>Aantal</td>
<td>Aantal</td>
</tr>
<tr>
<td>Waarnemer</td>
<td>Waarnemer</td>
</tr>
</tbody>
</table>

Mogelijk dat de terreingebraakwaarnemingen worden uitgebreid met het vastleggen van het aantal dieren bij de aangelegde richels en het aantal dieren in andere schuillocaties. Ook hier zal dan weer gebruik worden gemaakt van pq's van ca 100x100 m. Je kunt deze pq's dan in de vaste route voor het vastleggen van het terreingebraak opnemen. Dit geeft ook aan dat het systeem flexibel moet zijn, en dat een eventuele uitbreiding eenvoudig in het systeem kan worden aangepast.
3 TECHNISCHE UITVOERING

Er zijn verschillende manieren om de databank vorm te geven. Uitgangspunt is dat de database door verschillende mensen te raadplegen moet zijn, dat er geen verschillende versies naast elkaar mogen bestaan, en dat er na invoer alleen door de beheerder gegevens mogen worden gewijzigd.

Dit kan op twee manieren worden gerealiseerd:
- een webapplicatie, met toegang d.m.v. van gebruikersnaam en wachtwoord.
- Een bestand voor Access, Oracle, of een andere database-applicatie, op een server, die door verschillende mensen kan worden gebruikt, maar slechts door 1 persoon kan worden gewijzigd.

De Zoogdiervereniging heeft ervaring met beide varianten: webapplicatie telmee.nl wordt gebruikt voor invoer van losse waarnemingen. Vrijwilligers kunnen invoeren en hun waarnemingen inzien, validatoren beoordelen waarnemingen, en een aantal vrijwilligers en werknemers kunnen in de waarnemingen kijken, groepen waarnemingen selecteren en exporteren voor verdere analyses.

Bij de monitoringsmeetnetten van de Zoogdiervereniging wordt gebruik gemaakt van Access databases, waarbij één beheerder is aangesteld. Deze persoon doet het technisch beheer. Daarnaast is de de projectleider van de betreffende monitoringsprojecten, die het inhoudelijk beheer doet: deze draagt zorg voor invoer, export, gebruik, en zorgt voor eventuele aanpassingen in de structuur.

Een aantal werknemers en vrijwilligers voeren gegevens in, en de projectleider en landelijk coördinator bevragen de database, valideren. Uit deze databases kunnen exports gemaakt worden voor invoer in de landelijke databank NDFF, voor analyses door CBS, en voor gegevensleveringen aan beheerders of overheid.

Beide vormen hebben voor- en nadelen. Een online database heeft als voordeel dat men er van elke locatie met internet bij kan. Ontwikkeling zal echter vrij veel tijd kosten, en het systeem zal vrij statisch zijn. Bij de Access-databank is meer aandacht nodig voor het beheer: een bestand op de server van SBB is kwetsbaarder voor accidentele wis-, of edit-acties, maar is ook af te schermen door middel van passwords, het is een systeem dat flexibel is: makkelijker aan te passen en af te stemmen is op de praktijk. Daarnaast is een Access database makkelijk te integreren in GIS. De Access-variant is flexibeler: makkelijker aan te passen, en kan dus aangepast worden aan nieuwe methoden, verfijningen van de methode of dataopslag, en nieuwe bevragingen zijn eenvoudig op te zetten.

Een Access-database zoals hierboven geschetst is, zo is de ervaring bij de Zoogdiervereniging, in zo’n 5 dagen op te zetten.
BIJLAGE PROTOCOL 1: TELLING HOEFDIEREN OOSTVAARDERSPLASSEN VANUIT DE LUCHT (JANUARI 2011)

Om een indruk te krijgen van de aantallen hoefdieren in de Oostvaardersplassen wordt een telling vanuit de lucht bij een minimale vlieghoogte van 200m en een minimale zichtbaarheid van 5 km met behulp van een klein, bemand vliegtuig aanbevolen. De telling dient volgens onderstaand protocol te verlopen. Ten behoeve van een nauwkeurige uitwerking worden de beelden vastgelegd m.b.v. digitale kleurenfotografie en/of film, uitgebreid met IR-fotografie. Het gebruik van een handteller wordt ontraden.

Altijd geldt:
Een optimale voorbereiding en uitvoering met alle partijen is noodzakelijk. Leidend daarbij zijn voorliggend protocol en de conclusies van dit rapport.

Uitvoering
Doordat het om een relatief klein gebied gaat (in vergelijking met wildparken in Afrika of bosgebieden in Canada) is het zeer haalbaar het hele gebied integraal te fotograferen, door transecten bij helder weer te vliegen en fotograferen.

De foto’s dienen orthogonaal (loodrecht naar beneden; Figuur 1.1) te zijn. Om de foto’s te kunnen koppelen tot een compositiefoto moeten de foto’s enigszins overlappen, en moet de positie en hoogte waarop de foto genomen is vastgelegd worden (dmv GPS).

Figuur 1.1 Voorbeeld van orthogonale foto. Foto: Jasja Dekker

De genomen digitale foto’s worden aan elkaar gekoppeld en geogereferceerd, in een GIS. In het GIS kan eenvoudig en zonder vergissingen worden geteld, door van elk dier handmatig een puntlocatie te maken. Nadat alle dieren aangestipt zijn, wordt het totaal aantal stippen automatisch geteld door het GIS. Wellicht dat daarbij door gebruikmaking van de lengte van de dieren een onderscheid in twee leeftijdsklassen mogelijk is.

Tussenafstand transecten
De breedte van het gefotografeerde beeld is afhankelijk van de beeldhoek (Engels: ‘angle of view’) van de lens, en de hoogte waarop gevlogen wordt (Figuur 1.2). De mate van detail van het verkregen beeld is afhankelijk van de gevoeligheid van de beeldsensor (resolutie, “aantal megapixels”) en de hoogte waarop gevlogen wordt. Zo is bij een horizontale beeldhoek van 40 graden, en een hoogte van 200 meter, de breedte van de gefotografeerde grond 145 meter.
Het is zaak dat er met een combinatie van camera-resolutie, -beeldhoek en vlieghoogte wordt gefotografeerd, waarbij rund, edelhert en paard duidelijk en herkenbaar op de foto komen.
Figuur 1.2. Relatie tussen de vlieghoogte, de waarnemingshoek en de breedte van het gefotografeerde transect.

Uit bovenstaande volgt:
- Doe tellingen aan de hand van orthogonaalfoto’s genomen uit een vliegtuig;
- Positie en hoogte van moment van elke foto wordt vastgelegd en gekoppeld aan de foto;
- Er wordt gevlogen op vaste transecten, op vaste afstand van elkaar, op vaste hoogte (tussen 150 en 200 meter);
- Het gehele gebied wordt in één sessie gefotografeerd;
- De breedte van het gebied dat op een foto komt, en daaruit volgend de tussenafstand tussen de transecten, moet worden afgeleid van de resolutie en beeldhoek van de gebruikte camera.
- De foto’s worden gekoppeld en geogereferceerd;
- Er wordt geteld door middel van markeren van elk dier in een GIS.
- De resolutie van de foto’s mag niet veel afwijken van 5 cm.

Vlieg bij helder weer (gezichtsveld >= 5 km) en gebruik, indien mogelijk, voor goed contrast een periode met sneeuwdek (Mayle et al. 1999). Mijdt schaatstochten.
BIJLAGE PROTOCOL 2: VASTLEGGEN VAN DE REACTIE VAN DE HOEFDIEREN OP HET GEBRUIK VAN EEN VLIEGTUIG BIJ DE TELLING (JANUARI 2011)

Zoals in dit rapport aangegeven kunnen dieren sterk reageren op het verschijnen van een vliegtuig en meer nog een helikopter. Dit kan de precision en nauwkeurigheid van een telling sterk beïnvloeden. Het is daarom van belang de reactie van de dieren vast te leggen. Deels kan dit wellicht door interpretatie van de luchtfoto's. Voorliggend protocol dient ter aanvulling ten behoeve van waarnemingen op de grond.

Uitvoering
Door de beheerder worden aantekeningen gemaakt over de weersomstandigheden, waarbij gebruik gemaakt wordt van gegevens van het dichtstbijzijnde KNMI weerstation. Tijdstip van aankomst en vertrek van het telvliegtuig worden vastgelegd.

Iedere waarnemer beschikt over een normale verrekijker/telescoop geschikt voor de daglichtwaarnemingen.

De beheerder wijst een aantal vaste waarnemingsposten aan.

De waarnemers worden geïnstrueerd en standaard waarneemformulieren met kaarten worden uitgedeeld die na afloop weer worden ingenomen.

De waarnemers blijven in een dienstauto op hun post van een uur voor de komst van het telvliegtuig tot een uur na het vertrek van het vliegtuig.

De situatie bij aankomst wordt vastgelegd op formulier en kaart. Elk half uur worden veranderingen in spreiding en aantallen per soort vastgelegd op formulier en kaart.

Gelet wordt het gedrag van de Konikpaarden, Heckrunderen en edelherten.

Op het formulier is ruimte voor: postnummer, volgnummer waarneming, kavelnummer, diersoort, groepstype (gemengde groep, mannetjesgroep, vrouwtjesgroep), tijdstip en totaal aantal dieren. Op de kaart van het gebied kunnen de corresponderende volgnummers worden ingetekend.

Verplaatsingen ten tijde van de aanwezigheid van het telvliegtuig worden op formulier en kaart vastgelegd. Van belang zijn:

- Diersoort;
- Kavelnummer;
- Groepsgrootte en groepstype/soort voor komst vliegtuig;
- Reactie op vliegtuig (opsplitsing groep, mengen groep, vlucht, vluchtrichting, geen reactie etc.);
- Hoe lang duurt eventuele onrust?
- Groepsgrootte en groepstype na vertrek vliegtuig.

Alle originele formulieren en kaarten worden door de beheerder uitgewerkt en digitaal opgeslagen voor de toekomst.

N.B.
ICMO2 adviseert weliswaar om buiten het broedseizoen te vliegen, maar ook het verstoren van niet broedvogels in ongewenst (FF-wet; Nb-wet). Duidelijke reacties van vogels op het verschijnen van het telvliegtuig dienen derhalve te worden genoteerd.
BIJLAGE PROTOCOL 3: TELLING HOEFDIEREN OOSTVAARDERSPlassen
VANAF DE GROND
(AUGUSTUS 2011)

Uitvoering
- Geteld worden de Konikpaarden, Heckrunderen en edelherten
- Bij elke telling worden door de beheerder aantekeningen gemaakt over de weersomstandigheden, waarbij gebruik gemaakt wordt van gegevens van het dichtstbijzijnde KNMI weerstation.
- De telling kent vaste telposten en een rijploeg.
- De indeling van de telgroepen is altijd dusdanig dan er ten minste één, maar vrijwel altijd twee ervaren mensen in zitten.
- Bij de start van elke telronde worden de tellers geïnstrueerd en worden standaard telformulieren met kaarten uitgedeeld waarop waarnemingen kunnen worden genoteerd.
- Iedere teller beschikt over een normale verrekijker/telescoop geschikt voor de daglichtwaarnemingen.
- Alle originele telformulieren worden centraal weer ingeleverd na afloop van de telling. Ze worden door de beheerder uitgewerkt en digitaal opgeslagen.
- Het resultaat van de hoogste telronde of, als dat hoger uitvalt, de som van het hoogste aantal dieren per geslacht/leeftijdscategorie, wordt gehanteerd als zijnde de minimaal aanwezige populatie (Minimum Number Alive). Door de drie achtereen volgende telrondes te zien als onafhankelijke steekproeven, is een berekening van een gemiddelde met standaardafwijking mogelijk.

Telposten
De beheerder wijst de naar schatting 20 stuks vaste telposten aan. Deze zijn zodanig over het hele gebied verspreid, dat een maximaal deel van het leefgebied van de hoefdieren wordt bestreken. Gedurende de telling is de aanwezigheid van de tellers beperkt tot die telpunten. Lopende tellers veroorzaken vluchtgedrag wat dubbeltellingen in de hand werkt.

Tellers worden met dienstauto’s naar hun telplek gebracht en weer opgehaald op een vast tijdstip. De ervaring is dat de hoefdieren vertrouwd reageren op dienstauto’s en daardoor ook nauwelijks wegvluchten.

Rijploeg
Vanuit een rijdende dienstauto wordt een zo groot mogelijk deel van het gebied bestreken. De auto wordt bij voorkeur niet verlaten om verstoring te voorkomen.

Voor het vaststellen van het totaal aantal dieren:
Steekproeven ten behoeve van het vaststellen van de populatiestructuur

Wanneer groepen dieren daar de gelegenheid voor bieden is het van belang wat nauwkeuriger te kijken. Daarom biedt het standaardtelformulier ook de mogelijkheid om in te vullen:

- aantal volwassen mannelijke dieren;
- aantal volwassen vrouwelijke dieren;
- aantal volwassen dieren van onbekend geslacht;
- aantal mannelijke jaarlingen;
- aantal vrouwelijke jaarlingen;
- aantal jaarlingen van onbekend geslacht;
- aantal mannelijke veulens/kalveren;
- aantal vrouwelijke veulens/kalveren;
- aantal veulens/kalveren van onbekend geslacht.
BRONNEN

